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Stretched exponential relaxation in the mode-coupling theory
for the Kardar-Parisi-Zhang equation
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We study the mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling regime,
focusing on the long time properties. By a saddle point analysis of the mode-coupling equations, we derive
exact results for the correlation function in the long-time limit—a limit that is hard to study using simulations.
The correlation function at wave vectér in dimensiond is found to behave asymptotically at tinteas
C(k,t) =A/KIT4~2%Btk?) "Zexd — (BtkY)Y#], with y=(d—1)/2, A a determined constant, ai®la scale fac-
tor.
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The Kardar-Parisi-Zhan@<PZ) [1] equation is a simple case whend=1, the existence of a fluctuation-dissipation
nonlinear Langevin equation, proposed in 1986 as a coars¢éheorem gives the exact resujs=1/2, z=3/2.
grained description of a growing interface. Probably due to We take a self-consistent approach, the mode-coupling
the fact that is the simplest generalization of the diffusion(MC) approximatior{7,8], in which in the diagrammatic ex-
equation, which includes a relevant nonlinear term, the KPzansion for the correlation and response function, only dia-
equation also arises in connection with many other importangrams that do not renormalize the three point veiteare
physical problemsthe Burgers equation for one-dimensional retained. The MC approximation has been remarkably suc-
turbulencd2], directed polymers in a random mediyB+5]  cessful in other areas of condensed-matter physics, for ex-
etc). ample, in the study of structural glass transitip@§ binary
The KPZ equation for a growing interface, described by amixtures [10], and critical dynamics of magne{d0,11].
single valued height functioh(x,t) on ad-dimensional sub- KPZ mode-coupling reproduces the exact values of the ex-
stratex e RY is ponents ind=1. Furthermore, MC equations have been
shown to arise from the larg@&l limit of a generalized
A N-component KPZ equatidr8], which allows, in principle, a
ah(x,t)=vV?h+ E(Vh)2+ 7(Xt). (1) systematic approach to the theory beyond mode coupling, by
expanding in IN.
i i Our study focuses on the large-time properties of the KPZ
The first term represents the surface-tension forces that te uation; we predict a stretched exponential decay for the
to smooth the interface, the second describes the nonline@gprelation function at large times. A phenomenological
growth locally normal to the surface, and the last is a noisg;retched exponential law was used as long ago as 1854 to fit
that mimics the stochastic nature of the growth pro¢é$s  gjectronic relaxation data for a Leiden jar capadjtd], and
We choose the noise to be Gaussian, with zero mean anghs peen rediscovered many times; fitting functions involv-
second moment(7(x,t) v(X’,t’)>_:2D5"(X—X’)5(t—t_’)- _ing stretched exponentials are nowadays widely used in the
The steady-state interface profile is usually described ithhenomenogical analysis of relaxation déexamples are
terms of the roughnessv=\/(h*(x,t))—(h(x,t))*, which  gielectric relaxatioff13] and glassy relaxatiof®,14)). How-
for a system of sizé&. behaves likeLXf(t/L?), wheref(X)  ever, only a few analytical argumerjts5] are able to repro-
—const asx— and f(x) ~x¥'* asx—0, so thatw grows  duce stretched exponential relaxation in complex systems.
with time like t¥' until it saturates td.* whent~L% y and  Our prediction is in principle amenable of numerical verifi-
z are the roughness and dynamic exponent, respectively. cation, even though usual numerical techniques, mainly
The phenomenology of the KPZ is well known: above hased on simulationgl6] of discrete microscopical models
two dimensions, there are two distinct regimes, separated bhat belong to the KPZ universality clagk?], are hard in the
a critical value\. of the nonlinearity coefficient. In the |ong-time asymptotic region.
weak-coupling regimeN<A\.) the nonlinear term is irrel- Mode-coupling equations are coupled equations for the
evant and the behavior is governed by the GaussianQ)  correlations and response function. The correlation and re-

fixed point. The KPZ in this regime is equivalent to the lin- sponse functions are defined in Fourier space by

ear Edward Wilkinson equation, for which the exponents are

known exactlyy=(2—d)/2 andz=2. The more challenging C(k,w)=(h(k,w)h* (k,w)),

strong-coupling regimeX>A\.), where the nonlinearity is

relevant, is characterized by anomalous exponents, which ar€(k,w)=6"4k—k')6 Y w— ' ){(dh(k,w)/dn(k',w")),

not known exactly in general dimensidnFrom the Galilean

invariance[2] [invariance of Eq(1) under an infinitesimal where(-) indicates an average over In the mode-coupling
tilting of the surfacé one can derive the relatiop+z=2, approximation, the correlation and response functions are the
which leaves just one independent exponent. For the speciablutions of two coupled equations,
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G Yk ,w)= Gy Yk, w)+ N JZWJ (27

X[q-(k—a)][g-k]G(k—qg,0—Q)C(q,2),
(2

\?
C(k, Co(k, +— Gk, 2] f
(k,w)=Co(k,w) | )| (2m)¢
X[q-(k—=q)]°C(k—0,0—Q)C(q,Q2), (3
where Gy(k,w)=(vk?—iw) ! is the bare response func-
tion, and Cy(k,w)=2D|G(k,w)|?. In the strong-coupling
limit, G(k,w) andC(k,w) take the following scaling forms
G(k,w)=k *g(w/k?),
C(k,w)=k ™ x*d2n(y/K?),

and Egs.(2) and (3) translate into the following coupled
equations for the scaling functiomgx) andg(x):

g 0 =—ix+14(x), (4)

n(x)=g(x)|?5(x), (5)

wherex= w/k* andl,(x) andl,(x) are given by

|1(X)=Pfﬂd6'sin“"2 Gf dqcosé(cosfd—q)q?? 32
0 0

Xfﬁ dyg( _rq y)n(y),

2(x)——J désinfi™ Zaf dg(cosd—q)?q?? 3 ~(d+4-2)

o

with P=\%/(2T[(d—1)/2)]w(4*37?) r2=1+¢?
—2g coso. It will be convenient to write Eqg4) and(5) as
a function of timet, by Fourier transforming them

)H(Y)

—~

E—;(t):mt), ®)

n .
@(t)zlz(t), )

wherel ; is the Fourier transform of the real partigfandi,
is the Fourier transform df,
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~ a
|1(t)=2wpf désinf=2 6
0

X f dqcosé(cosd—q)q?2 3gr(tron(tg?),
0

fz(t)szfowdasind_z 0

X J dqg(cos6—q)2q??3r ~@+4=22n(tr9)n(tg?).
0

We will show that an asymptotic solutian(t) =n..(t) for t
—oo of Eq. (7) is given by

n.(t)=A(Bt) "%~ B17", 8)
with y=(d—1)/2, «=1, and

g(0)~24I'(4z—4)
P20@- V21 [ (d—1)/2]T (22— 2)2"

€)

Before we proceed with the details of the calculation, we
shall briefly outline the strategy: assuming a solution of the
form (8) we evaluate the right-hand side of E@) in the
large t limit by saddle-point methods. The result of this
analysis shows that ang=<1 allows us to reproduce the
exponential factor on the left-hand side. ez, we find
that the left-hand side of E¢7) is dominated byg(0)~2n(t)
(see below; thus the asymptotic form of,(t) has to be
matched withg(0) ~2n..(t). While the exponential factor can
be matched by anw=<1, the only value ofx that also al-
lows us to match the power-law facttf? is «=1. We can
then proceed witlwe=1 to gety=(d—1)/2z andA given by
Eqg. (9). Note that even though the scaling part of the corre-
lation and response function are coupled in the two Egjs.
and (7), the knowledge of the specific form @f(t) is not
required to extract the largebehavior ofn(t).

Now we proceed with the details of the saddle-point cal-
culation. Let us start with the evaluation of the left-hand side
of Eq. (7). Expanding|g(x)|? in even powers ok around

x=0, we can write £/|g|%)(t)=aon(t)+a,d2h(t)/dt2
+ ..., whereay=g(0) 2. For n(t) of the form (8) with

a<z, the first term of the series will dominate at largeve
can therefore assume that the left-hand side of(Bchas the

asymptotic behaviorﬁ|\g|2)(t):g(0)*2ﬁ(t). Let us now
turn to the asymptotic analysis $§(t). First note that the
integral 1,(t), is symmetric in the exchangg—r, 6— ¢,

wherer sing=qsin (see Fig. 1 This allows us to rewrite

1,(t) as twice the integral restricted to the regiqrtosé
<1/2:
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172 1

FIG. 1. Region of integration fok,(t) in Eq. (10).
iz(t):zwpf qu_desind‘z 6
0 [

X j dq(cosa_ q)2q22—3r —(d+4—22)ﬁ(tr2)ﬁ(tq2),
0
(10

where co¥=max1/2q,1]. Ini,(t) the functionn(t) appears
in the integrand with the argumentg? tr% For large

enought, we can always safely replace(tr?) with its
asymptotic forrn..(tr?), since in the new region of integra-

tion r=1/2. We have to use more care witlftq?), since
such replacement is not allowed for &) but only for q

>C/tY, whereC is a large constant. We then hals(t)
=15(t)=J34(t) +JI(t), where

C/tl/Z T 42
Ji(t)=27P dq|_désinf~2¢
0 (4
X (Cosf— q)ZqZZ—3r —(d+4—22)ﬁ;(tr2)ﬁ(tq2)'

Jz(t)=2wpf dqf_ousvsind-2 6
cilz )

X (CosH— q)2(.42273r 7(d+4722)r’1;(tr2)ﬁ;(tq2)_

The contribution fromJ, is negligible with respect td, as
t—oo. Let us evaluate an asymptotic expression Jgrand

postpone the discussion df to the end. Inserting..(t)
=A(Bt) "Zexp(—|BY*?) in J,(t) gives

©

Jo(t)= ZWPAZ(Bt)ZV/Zf dqf_ désin®~2¢
citlz 0

X (COSG_ q)2q2Z73+ r —(d+4-22)+y

xexd — (BH)¥4q*+r9)]. (11)
It is immediately clear that the main contribution to this in-
tegral will come from the region where(q,0)=q“
+r(q,0)* has its minimum, i.e., from the segmerst
=0, C/t*¥?<q<1/2 (for large enough, C/t*?<1/2). The
value of g which minimizesf will depend ona: for «
<1, f reaches its minimum afj,=C/t'?, where f(q,,0)
=Ct¥?+|(1—C/tY9)|*=1+ (C/tY?)*+ O(C/t*?). For a
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>1, the minimum is realized atj=1/2, wheref(1/2,0)
=1/2*"1. Fora=1, all q in the regionC/t*?<q<1/2 con-
tribute equally, givingf(g,0)=1. The saddle-point approxi-
mation in the angular integral gives

1/2

Jz(t):szAz(Bt)ZV’Zf dq

citlz

xexd — (Bt)*(q*+|1—q|%)]

X|1_q|27(d+472z)+yq2273+yf0 dead—z

o
Xexp{—(Bt)“’ZEq|1—q|“102} (12
Performing the integral ovef in the larget limit
d—1 2 d—1/2
J,(t)= 7P AT _) _) (Bt)27/7—(d-1)/z
2 o
112 )
~ J'c/tllqu eX[{ o (Bt)a Z(qa_" | 1- Q|a)]| 1- q| ¢’q¢'
(13

where ¢=2z—d—-2+y+(1—a)(d—1)/2 and y=2z—3
+y—(d—1)/2. The leading contribution for largeis then
given by

d—-1/2
Jo(t)= 7TPA2I‘( ) (;) (Bt)2v/z-(d-byiz

2
.
Me*(BO“’Z(Bt)*W“)’Z a<l
a
« < | ef(Bt)llz a/:l

(Bt)alz
2a*l

(Bt)—aIZZ a>1,

L
(14)

wherel = [¢2dqq”’(1—q)?. For a<1, the left-hand side of
Eq. (7) will be dominated by a term of the form
g(0)"2n.(t), thus [,(t)=J,(t) must be proportional to
n..(t). This can only be achieved wita=1 and y=(d
—1)/2. Fora<1, the stretched exponential factor is recov-
ered, but trying to match the power ofleads toy=(d
—1)/2+ ¢+ 1, which can only be satisfied by the unphysical
valuez=1. For 1< a <z, the left-hand side of Eq7) cannot
be matched by,. We then conclude that must be equal to
1, and the asymptotic solution is then given by ). The
coefficient A can be determined as well by observing that
y=(d—1)/2 gives ¢y=¢=2z—3, and thus I=1"(2z
—2)?/2I"(4z— 4), which leads to Eq(9).

Let us now go back to the integrdl. The argument of
n(tg? in J; runs between 0 an@2. Thus we can obtain an
upper bound ord; by replacingﬁ(tqz) by its maximum in
this region(which is given byn(0) if n(t) is a monotoni-
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cally decreasing function An analysis similarly to the one an asymptotic solution for atlasz approaches 2.

done forJ,, can then be performed fal;, leading toJ, In summary, we have presented an analytical derivation

o (Bt) yiz—(d-1)/2g~ BV Thus the contribution td, from  of an asymptotic solution of the mode-coupling equations for

J, is down by a factor Bt) = 7'2. the strong-coupling regime of the KPZ equation in the large
The scale paramet&is just that, and remains unfixed in t limit. We predict a stretched exponential relaxation for the

terms of the parameters of the KPZ equation. In a recergorrelation function, with a power-law prefactor. We hope

work [18], we proposed a scaling ansatz for the correlatiorfhat this prediction will stimulate numerical investigations of

function asz— 2. If such an ansatz is correct, in a parametri-long-time limits generally.

zation whereg(0) is finite, the scal® ™ on whicht varies

would go to zero ag approaches 2B~ '=(2—2). Thus the The authors acknowledge the support of EPSRC under

asymptotic solution that we have found here could be read aSrant Nos. GR/L38578 and GR/L97698.
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