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Stretched exponential relaxation in the mode-coupling theory
for the Kardar-Parisi-Zhang equation
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We study the mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling regime,
focusing on the long time properties. By a saddle point analysis of the mode-coupling equations, we derive
exact results for the correlation function in the long-time limit—a limit that is hard to study using simulations.
The correlation function at wave vectork in dimensiond is found to behave asymptotically at timet as
C(k,t).A/kd1422z(Btkz)g/zexp@2(Btkz)1/z#, with g5(d21)/2, A a determined constant, andB a scale fac-
tor.
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The Kardar-Parisi-Zhang~KPZ! @1# equation is a simple
nonlinear Langevin equation, proposed in 1986 as a coa
grained description of a growing interface. Probably due
the fact that is the simplest generalization of the diffus
equation, which includes a relevant nonlinear term, the K
equation also arises in connection with many other impor
physical problems~the Burgers equation for one-dimension
turbulence@2#, directed polymers in a random medium@3–5#
etc.!.

The KPZ equation for a growing interface, described b
single valued height functionh(x,t) on ad-dimensional sub-
stratexPRd is

] th~x,t !5n“2h1
l

2
~“h!21h~x,t !. ~1!

The first term represents the surface-tension forces that
to smooth the interface, the second describes the nonli
growth locally normal to the surface, and the last is a no
that mimics the stochastic nature of the growth process@6#.
We choose the noise to be Gaussian, with zero mean
second moment̂ h(x,t)h(x8,t8)&52Ddd(x2x8)d(t2t8).
The steady-state interface profile is usually described
terms of the roughness:w5A^h2(x,t)&2^h(x,t)&2, which
for a system of sizeL behaves likeLx f (t/Lz), where f (x)
→const asx→` and f (x);xx/z as x→0, so thatw grows
with time like tx/z until it saturates toLx whent;Lz. x and
z are the roughness and dynamic exponent, respectively

The phenomenology of the KPZ is well known: abo
two dimensions, there are two distinct regimes, separate
a critical value lc of the nonlinearity coefficient. In the
weak-coupling regime (l,lc) the nonlinear term is irrel-
evant and the behavior is governed by the Gaussian (l50)
fixed point. The KPZ in this regime is equivalent to the li
ear Edward Wilkinson equation, for which the exponents
known exactlyx5(22d)/2 andz52. The more challenging
strong-coupling regime (l.lc), where the nonlinearity is
relevant, is characterized by anomalous exponents, which
not known exactly in general dimensiond. From the Galilean
invariance@2# @invariance of Eq.~1! under an infinitesimal
tilting of the surface# one can derive the relationx1z52,
which leaves just one independent exponent. For the spe
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case whend51, the existence of a fluctuation-dissipatio
theorem gives the exact resultsx51/2, z53/2.

We take a self-consistent approach, the mode-coup
~MC! approximation@7,8#, in which in the diagrammatic ex
pansion for the correlation and response function, only d
grams that do not renormalize the three point vertexl are
retained. The MC approximation has been remarkably s
cessful in other areas of condensed-matter physics, for
ample, in the study of structural glass transitions@9#, binary
mixtures @10#, and critical dynamics of magnets@10,11#.
KPZ mode-coupling reproduces the exact values of the
ponents ind51. Furthermore, MC equations have be
shown to arise from the largeN limit of a generalized
N-component KPZ equation@8#, which allows, in principle, a
systematic approach to the theory beyond mode coupling
expanding in 1/N.

Our study focuses on the large-time properties of the K
equation; we predict a stretched exponential decay for
correlation function at large times. A phenomenologic
stretched exponential law was used as long ago as 1854
electronic relaxation data for a Leiden jar capacitor@12#, and
has been rediscovered many times; fitting functions invo
ing stretched exponentials are nowadays widely used in
phenomenogical analysis of relaxation data~examples are
dielectric relaxation@13# and glassy relaxation@9,14#!. How-
ever, only a few analytical arguments@15# are able to repro-
duce stretched exponential relaxation in complex syste
Our prediction is in principle amenable of numerical veri
cation, even though usual numerical techniques, ma
based on simulations@16# of discrete microscopical model
that belong to the KPZ universality class@17#, are hard in the
long-time asymptotic region.

Mode-coupling equations are coupled equations for
correlations and response function. The correlation and
sponse functions are defined in Fourier space by

C~k,v!5^h~k,v!h* ~k,v!&,

G~k,v!5d2d~k2k8!d21~v2v8!^]h~k,v!/]h~k8,v8!&,

where^•& indicates an average overh. In the mode-coupling
approximation, the correlation and response functions are
solutions of two coupled equations,
©2001 The American Physical Society03-1
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G21~k,v!5G0
21~k,v!1l2E dV

2p E ddq

~2p!d

3@q•~k2q!#@q•k#G~k2q,v2V!C~q,V!,

~2!

C~k,v!5C0~k,v!1
l2

2
uG~k,v!u2E dV

2p E ddq

~2p!d

3@q•~k2q!#2C~k2q,v2V!C~q,V!, ~3!

where G0(k,v)5(nk22 iv)21 is the bare response func
tion, and C0(k,v)52DuG(k,v)u2. In the strong-coupling
limit, G(k,v) andC(k,v) take the following scaling forms

G~k,v!5k2zg~v/kz!,

C~k,v!5k2(2x1d1z)n~v/kz!,

and Eqs.~2! and ~3! translate into the following coupled
equations for the scaling functionsn(x) andg(x):

g21~x!52 ix1I 1~x!, ~4!

n~x!5ug~x!u2I 2~x!, ~5!

wherex5v/kz and I 1(x) and I 2(x) are given by

I 1~x!5PE
0

p

du sind22 uE
0

`

dq cosu~cosu2q!q2z23r 2z

3E
2`

`

dy gS x2qzy

r z D n~y!,

I 2~x!5
P

2E0

p

du sind22 uE
0

`

dq~cosu2q!2q2z23r 2(d142z)

3E
2`

`

dy nS x2qzy

r z D n~y!,

with P5l2/(2dG@(d21)/2)#p (d13)/2), r 2511q2

22q cosu. It will be convenient to write Eqs.~4! and~5! as
a function of timet, by Fourier transforming them

gR̂

ugu2
~ t !5 Î 1~ t !, ~6!

n̂

ugu2
~ t !5 Î 2~ t !, ~7!

whereÎ 1 is the Fourier transform of the real part ofI 1 and Î 2
is the Fourier transform ofI 2
05710
Î 1~ t !52pPE
0

p

du sind22 u

3E
0

`

dq cosu~cosu2q!q2z23gR̂~ tr z!n̂~ tqz!,

Î 2~ t !5pPE
0

p

du sind22 u

3E
0

`

dq~cosu2q!2q2z23r 2(d1422z)n̂~ tr z!n̂~ tqz!.

We will show that an asymptotic solutionn̂(t)5n`̂(t) for t
→` of Eq. ~7! is given by

n`̂~ t !5A~Bt!g/ze2uBtua/z
, ~8!

with g5(d21)/2, a51, and

A5
g~0!224G~4z24!

P2(d21)/2G@~d21!/2#G~2z22!2
. ~9!

Before we proceed with the details of the calculation,
shall briefly outline the strategy: assuming a solution of
form ~8! we evaluate the right-hand side of Eq.~7! in the
large t limit by saddle-point methods. The result of th
analysis shows that anya<1 allows us to reproduce th
exponential factor on the left-hand side. Fora<z, we find
that the left-hand side of Eq.~7! is dominated byg(0)22n̂(t)
~see below!, thus the asymptotic form ofI 2(t) has to be
matched withg(0)22n`̂(t). While the exponential factor can
be matched by anya<1, the only value ofa that also al-
lows us to match the power-law factortg/z is a51. We can
then proceed witha51 to getg5(d21)/2z andA given by
Eq. ~9!. Note that even though the scaling part of the cor
lation and response function are coupled in the two Eqs.~6!

and ~7!, the knowledge of the specific form ofĝ(t) is not
required to extract the larget behavior ofn̂(t).

Now we proceed with the details of the saddle-point c
culation. Let us start with the evaluation of the left-hand s
of Eq. ~7!. Expandingug(x)u2 in even powers ofx around

x50, we can write (n/ugu2)̂(t)5a0n̂(t)1a1d2n̂(t)/dt2

1 . . . , where a05g(0)22. For n̂(t) of the form ~8! with
a<z, the first term of the series will dominate at larget, we
can therefore assume that the left-hand side of Eq.~7! has the

asymptotic behavior (n/ugu2)̂(t).g(0)22n̂(t). Let us now
turn to the asymptotic analysis ofÎ 2(t). First note that the
integral Î 2(t), is symmetric in the exchangeq→r , u→f,
wherer sinf5qsinu ~see Fig. 1!. This allows us to rewrite
Î 2(t) as twice the integral restricted to the regionq cosu
,1/2:
3-2
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Î 2~ t !52pPE
0

`

dqE
ū

p

du sind22 u

3E
0

`

dq~cosu2q!2q2z23r 2(d1422z)n̂~ tr z!n̂~ tqz!,

~10!

where cosū5max@1/2q,1#. In Î 2(t) the functionn̂(t) appears
in the integrand with the argumentstqz, tr z. For large
enough t, we can always safely replacen̂(tr z) with its
asymptotic formn`̂(tr z), since in the new region of integra
tion r>1/2. We have to use more care withn̂(tqz), since
such replacement is not allowed for allq, but only for q

.C/t1/z, whereC is a large constant. We then haveÎ 2(t)

.I 2
`̂(t)5J1(t)1J2(t), where

J1~ t !52pPE
0

C/t1/z

dqE
ū

p

du sind22 u

3~cosu2q!2q2z23r 2(d1422z)n`̂~ tr z!n̂~ tqz!,

J2~ t !52pPE
C/t1/z

`

dqE
ū

p

du sind22 u

3~cosu2q!2q2z23r 2(d1422z)n`̂~ tr z!n`̂~ tqz!.

The contribution fromJ1 is negligible with respect toJ2 as
t→`. Let us evaluate an asymptotic expression forJ2 and
postpone the discussion ofJ1 to the end. Insertingn`̂(t)
5A(Bt)g/zexp(2uBtua/z) in J2(t) gives

J2~ t !52pPA2~Bt!2g/zE
C/t1/z

`

dqE
ū

p

du sind22 u

3~cosu2q!2q2z231gr 2(d1422z)1g

3exp@2~Bt!a/z~qa1r a!#. ~11!

It is immediately clear that the main contribution to this i
tegral will come from the region wheref (q,u)5qa

1r (q,u)a has its minimum, i.e., from the segmentu
50, C/t1/z,q,1/2 ~for large enought, C/t1/z,1/2). The
value of q which minimizes f will depend on a: for a
,1, f reaches its minimum atq05C/t1/z, where f (q0,0)
5Ca/ta/z1u(12C/t1/z)ua.11(C/t1/z)a1O(C/t1/z). For a

FIG. 1. Region of integration forÎ 2(t) in Eq. ~10!.
05710
.1, the minimum is realized atq51/2, where f (1/2,0)
51/2a21. For a51, all q in the regionC/t1/z,q,1/2 con-
tribute equally, givingf (q,0)51. The saddle-point approxi
mation in the angular integral gives

J2~ t !.2pPA2~Bt!2g/zE
C/t1/z

1/2

dq

3exp@2~Bt!a/z~qa1u12qua!#

3u12qu22(d1422z)1gq2z231gE
0

p

duud22

3expF2~Bt!a/z
a

2
qu12qua21u2G . ~12!

Performing the integral overu in the larget limit

J2~ t !.pPA2GS d21

2 D S 2

a D d21/2

~Bt!2g/z2(d21)/2z

3E
C/t1/z

1/2

dq exp@2~Bt!a/z~qa1u12qua!#u12qufqc,

~13!

where f52z2d221g1(12a)(d21)/2 and c52z23
1g2(d21)/2. The leading contribution for larget is then
given by

J2~ t !.pPA2GS d21

2 D S 2

a D d21/2

~Bt!2g/z2(d21)/2z

35
G„~c11!/a…

a
e2(Bt)a/z

~Bt!2(c11)/z a,1

I e2(Bt)1/z
a51

Ap22(f1c) expF2
~Bt!a/z

2a21 G ~Bt!2a/2z a.1,

~14!

whereI 5*0
1/2dqqc(12q)f. For a<1, the left-hand side of

Eq. ~7! will be dominated by a term of the form
g(0)22n`̂(t), thus I 2(t )̂.J2(t) must be proportional to
n`̂(t). This can only be achieved witha51 and g5(d
21)/2. Fora,1, the stretched exponential factor is reco
ered, but trying to match the power oft leads tog5(d
21)/21c11, which can only be satisfied by the unphysic
valuez51. For 1,a,z, the left-hand side of Eq.~7! cannot
be matched byJ2. We then conclude thata must be equal to
1, and the asymptotic solution is then given by Eq.~8!. The
coefficient A can be determined as well by observing th
g5(d21)/2 gives c5f52z23, and thus I 5G(2z
22)2/2G(4z24), which leads to Eq.~9!.

Let us now go back to the integralJ1. The argument of
n̂(tqz) in J1 runs between 0 andCz. Thus we can obtain an
upper bound onJ1 by replacingn̂(tqz) by its maximum in
this region~which is given byn̂(0) if n̂(t) is a monotoni-
3-3
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cally decreasing function!. An analysis similarly to the one
done for J2, can then be performed forJ1, leading toJ1

}(Bt)g/z2(d21)/2ze2(Bt)a/z
. Thus the contribution toI 2

`̂ from
J1 is down by a factor (Bt)2g/z.

The scale parameterB is just that, and remains unfixed i
terms of the parameters of the KPZ equation. In a rec
work @18#, we proposed a scaling ansatz for the correlat
function asz→2. If such an ansatz is correct, in a parame
zation whereg(0) is finite, the scaleB21 on which t varies
would go to zero asz approaches 2:B21.(22z). Thus the
asymptotic solution that we have found here could be rea
tt

s.

05710
nt
n
-

as

an asymptotic solution for allt asz approaches 2.
In summary, we have presented an analytical derivat

of an asymptotic solution of the mode-coupling equations
the strong-coupling regime of the KPZ equation in the lar
t limit. We predict a stretched exponential relaxation for t
correlation function, with a power-law prefactor. We ho
that this prediction will stimulate numerical investigations
long-time limits generally.
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Venäläinen, J. Stat. Phys.72, 207~1993!; E. Marinari, A. Pag-
nani, and G. Parisi, J. Phys. A33, 8181~2000!.

@17# M. Marsili, A. Maritan, F. Toigo, and J. R. Banavar, Re
Mod. Phys.68, 963 ~1996!.

@18# F. Colaiori and M. A. Moore, Phys. Rev. Lett.~to be pub-
lished!, e-print cond-mat/0010410.
3-4


